Durability and efficiency of anti-soiling coatings for primary mirrors

Raiselife Workshop
28th of November 2019

Johannes Wette
Motivation: Soiling

- Traditional CSP sites (e.g. USA & Spain) have good conditions concerning soiling
- Soiling very site dependent
- Potentially more severe at new/future sites (Sahara, Middle East, China)

- Direct influence on optical efficiency of solar field, and thus output, strategies, etc.
- One approach for soiling mitigation: anti-soiling coatings (apart from site selection, cleaning strategies, protection (e.g. fences))
Anti-soiling coatings

- Application of thin transparent layers on front surface of commercial silvered-glass mirrors
 - Reduce soiling adhering to surface
 - “Easy-to-clean” properties
 - Not affecting the optical properties of the base reflector (no absorption or scattering)
 - Maintain properties over lifetime

- Different effects used to realize anti-soiling properties:
 - Hydrophobic (“Lotus” effect)
 - Hydrophilic
 - Photocatalytic
 - Anti-static
Evaluation Techniques

- **Outdoor campaign**, regular *measurements*, cleaning
 - Man power needed,
 - Fixed or adaptable cleaning/measurement frequency
 - Test different cleaning techniques
- **Continuous** outdoor measurements (**TraCS**)
 - Automated system for soiling measurements
- **Outdoor exposure** without regular cleaning/measurements
 - Mainly durability evaluation to outdoor conditions
- **Accelerated aging**, laboratory tests
 - Quick
 - Controlled conditions
 - Be sure to select adequate tests/parameters
Measurement Parameters

- Specular reflectance $\rho_{s,\varphi}$
- Cleanliness $\xi = \frac{\rho_{s,\varphi}}{\rho_{s,\varphi,\text{clean}}}$
- Cleanliness difference/gain
 \[\Delta\xi = \xi_{AS} - \xi_{\text{uncoated}} \]
- Accumulated cleanliness gain
 \[\overline{\Delta\xi}(t) = \frac{\int_{t=0}^{t} \Delta\xi \, dt}{\Delta t} \]
Outdoor Campaigns

- 1 for Fla (start 2011, 6 years duration)
- 1st Raiselife for Fla
- Wascop
- 2nd Raiselife for Fla
First campaign commercial AS coatings

- Start 2011, duration nearly **6 years**
- Different coatings tested, **two coatings** chosen to measure until end
- 2 cleaning frequencies (2&4 weeks)
- Excellent AS behavior in the beginning
- Both coatings **degrade**
- Around **3% reflectance loss** over the exposure period
- **Disadvantage** compared to uncoated after **2-4 years**.

![Graph showing reflectance difference before and after cleaning with Advantage AS1 and AS2 coatings.](image-url)
First Raiselife campaign

- 2 anti-soiling coatings
- 2 cleaning techniques
- 2 years outdoor exposure

First Raiselife campaign

- 2 anti-soiling coatings
- 2 cleaning techniques
- 2 years outdoor exposure
- Different results for different cleaning techniques
- 1 material shows **better AS behavior BUT degrades** (ca. 5% reflectance drop with brush cleaning)

Accumulated cleanliness gain

<table>
<thead>
<tr>
<th>(\Delta \xi) (2 years)</th>
<th>AS1</th>
<th>AS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 (pressure)</td>
<td>0.008</td>
<td>-0.005</td>
</tr>
<tr>
<td>S2 (brush)</td>
<td>-0.009</td>
<td>0.005</td>
</tr>
</tbody>
</table>

TraCS soiling rate measurements

- Continuous measurements: cleanliness and soiling rate at 2 sites (PSA & Missour)
- 10 months exposure
- AS2 lower, AS1 higher soiling rate than reference (possibly due to degradation)

<table>
<thead>
<tr>
<th>Mirror sample</th>
<th>Average soiling rate [%/day]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSA</td>
</tr>
<tr>
<td>AS1</td>
<td>-0.424</td>
</tr>
<tr>
<td>AS2</td>
<td>-0.235</td>
</tr>
<tr>
<td>Ref1</td>
<td>-0.362</td>
</tr>
<tr>
<td>Ref2</td>
<td>-0.318</td>
</tr>
</tbody>
</table>

[Wolfertstetter et al, 2019. Parallel soiling measurements for 4 mirror samples during outdoor exposure with TraCS, SolarPACES, Daegu]
Wascop campaign

- 1 coating analyzed
- 2 cleaning techniques
- Nearly 2 years of exposure

- No degradation detected
- Around 1% cleanliness gain
- Higher cleanliness gain for pressure water

2nd Raiselife campaign

- 3 coatings
- Campaign running, 10+ months of measurements available
- 1 liquid coating showed very low mechanical stability and was discarded after only few weeks of measurement
- **Cleanliness gain of 1-1.7% with no degradation**
Accelerated aging

- Standard weathering tests recommended:
 - Mainly UV/humidity/temperature
- Special focus on **mechanical tests**
 - Taber abrasion [UNE206016]
 - Washability [ISO11998], brush cleaning
 - Erosion, Sandstorm simulation
Conclusions

• Anti-soiling coatings pose an interesting option for soiling mitigation
 • Overall **cleanliness gain** of 1-3% detected
 • Potentially higher at sites with stronger soiling

• **Durability** is an important issue
 • Mechanical stability?

• Evaluation/ **testing** of coatings prior to application
 • Selection of **testing parameters** based on knowledge of planned installation site and implementation
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 686008

Thank you for your attention!