

Solar accelerated aging test on different coatings:

Evolution of the absorptivity, and next characterization planed

17th May 2017, Raiselife dissemination Workshop – Madrid

Reine REOYO-PRATS, PROMES - CNRS

Solar accelerated aging test on different coatings

First solar accelerated aging tests on T91 samples, with 4 different coatings:

Ceramic absorbing paint

Protective aluminide coating + Ceramic absorbing paint

Multi-metallic diffusion coating (Cr – Mg)

Solar selective magnetron-sputtered coating

Solar accelerated aging test on different coatings

I/ Presentation of the SAAF : Solar Accelerated Aging Facility

II/ Aging cycles applied

III/ First results: evolution of the absorptance

IV/ Other characterizations expected : conductivity and diffusivity with photothermal experience

I/ Presentation of the SAAF Solar Accelerated Aging Facility

II/ Aging cycles applied on T91 samples

☐ Requirements:

- Maximal temperature similar to the real conditions: 650 °C
- Maximal flux similar to the real conditions: 500 kW/m²

II/ Aging cycles applied on T91 samples

☐ Requirements:

- Maximal temperature similar to the real conditions: 650 °C
- Maximal flux similar to the real conditions: 500 kW/m²
- Testing conditions applied to provide an accelerated aging:
 - Quick variation of the flux: 250kW/m²/s

II/ Aging cycles applied on T91 samples

☐ Requirements :

- Maximal temperature similar to the real conditions: 650 °C
- Maximal flux similar to the real conditions: 500 kW/m²
- Testing conditions applied to provide an accelerated aging:
 - Quick variation of the flux: 250kW/m²/s
 - → High gradient temperature

II/ Aging cycles applied on T91 samples

□ Requirements :

- Maximal temperature similar to the real conditions: 650 °C
- Maximal flux similar to the real conditions: 500 kW/m²
- Testing conditions applied to provide an accelerated aging:
 - Quick variation of the flux: 250kW/m²/s
 - → High gradient temperature : about 25°C/s
 - ➤ Short cycles : 4 minutes/cycle
 - → About 70 cycles/sunny day (high & stable DNI Direct Normal Irradiation)

II/ Aging cycles applied on T91 samples

- ☐ Comparison with gradient flux in real conditions
 - & Application of a concentrator factor of 700
 - Example on a cloudy day: 2 april 2017
 - → Variation of 300 and -300 W/m²/s in less than 1 min → 210 kW/m²/s

- Study based on 30 consecutive days (January February 2017)
 - → Flux variation > 250 kW/m²/s : 2 times in 30 days

Cycles applied with the SAAF: about 70 cycles /day

III/ First results: evolution of the absorptance

So far: 130 cycles applied on each sample

☐ No visual damage on the coatings

but oxidation of the steel substrate visible on the back of the selective sample

III/ First results: evolution of the absorptance

So far: 130 cycles applied on each sample

■ No visual damage on the coatings

but oxidation of the steel substrate visible on the back of the selective sample

☐ Spectral absorptance : stable

III/ First results: evolution of the absorptance

So far: 130 cycles applied on each sample

■ No visual damage on the coatings but oxidation of the steel substrate visible on the back of the selective sample

☐ Spectral absorptance : stable

■ Solar Weighted Absorptance : stable

III/ First results: evolution of the absorptance

So far: 130 cycles applied on each sample

■ No visual damage on the coatings

but oxidation of the steel substrate visible on the back of the selective sample

□ Spectral absorptance : stable

No significative evolution of the absorptance with these kind of cycles for now

More cycles ongoing, until 200 at least

More aggressive tests ongoing

IV/ Other characterization expected: conductivity and diffusivity with photothermal experience

- **□** Interesting characteristics
- Evolution of the coating conductivity
- Evolution of the coating diffusivity
- Evolution of the Thermal Contact Resistance between the coating and the substrate

☐ Measuring test bench : photothermal device

IV/ Other characterization expected: conductivity and diffusivity with photothermal experience

- \Box Use of the results to estimate the thermal characteristics β1, β2, β3
- Inverse method

IV/ Other characterization expected: conductivity and diffusivity with photothermal experience

- \Box Use of the results to estimate the thermal characteristics β1, β2, β3
- > Inverse method

Physical model of the experience:

T mod = f (β_{1i} , β_{2i} , β_{3i} , t)

Experimental evolution of the temperature :

$$T \exp = g(t)$$

Minimization of the gap by **iteration**: New values of the parameters β_1 , β_2 , β_3

Adjusted parameters:

T mod = f (
$$\beta_{1f}$$
, β_{2f} , β_{3f} , t) = T exp ± ϵ

IV/ Other characterization expected: conductivity and diffusivity with photothermal experience

- \Box Use of the results to estimate the thermal characteristics β1, β2, β3
- > Artificial Intelligence tools: Artificial Neural Network (ANN), connectionist approach

Thank you for your attention

Reine REOYO-PRATS
Olivier FAUGEROUX
Bernard CLAUDET
Harold THIBAULT

CNRS – PROMES

